
J. Fluid Mech. (2002), vol. 459, pp. 289–306. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008224 Printed in the United Kingdom

289

The effect of surfactant on the stability of a
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The surface-tension-driven motion of a surfactant-coated liquid thread in inviscid
surroundings is investigated using linear stability theory as well as one-dimensional
nonlinear approximations to the governing Navier–Stokes equations. Examination of
analytic limits of the linear dispersion relationship demonstrates that surfactant acts as
a distinct mechanism for long-wavelength cut-off, instead of inertia, if the surfactant
effects exceed a critical value, β = 1

2
, where β is a dimensionless surface-tension

gradient. Two different long-wavelength regimes can be identified, depending on the
degree of tangential stress, with β = 1 characterizing a transition from extensionally
dominated inertial flow to shear-dominated viscous flow. One-dimensional nonlinear
models are formulated which capture the changes in behaviour with variation of β
by inclusion of the necessary high-order terms. Scaling close to breakup shows that
surfactant is swept away from the pinching region and then has little effect.

1. Introduction
The surface-tension-driven instability of a liquid thread is a well-known problem

with applications to many industrial processes, such as ink-jet printing and the
manufacture of optical fibres. Theoretical work on the subject stems from Lord
Rayleigh’s (1879, 1892) classic papers. Rayleigh performed linear stability analyses for
both inviscid and viscous threads (in inviscid surroundings) to show that infinitesimal
perturbations to a thread will grow if the wavelength of the perturbation is greater
than the circumference of the thread. The instability leads to the breakup of the
thread into droplets. In a subsequent study, Tomotika (1935) incorporated a viscous
surrounding liquid into the analysis to show that very long wavelengths have slower
growth rates than for threads in inviscid surroundings because of the greater shear
stresses involved in transporting liquid along the thread.

Nonlinear growth of the surface-tension instability leads to the formation of smaller
drops (satellite drops) from the thin thread left between main drops. The nonlinear
dynamics of thread breakup have been described analytically by the development of
one-dimensional approximations to the governing Navier–Stokes equations (Eggers
& Dupont 1994; Garcia & Castellanos 1994). The one-dimensional models are based
on the assumption that the thread is long and thin, so that flow is mainly in the
axial direction and uniform across the thread. Eggers (1997) presents a comprehensive
review of nonlinear theories and experimental work on the details of the nonlinear
behaviour of the surface-tension instability.
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The surface-tension-driven flow of a surfactant-coated thread, while often of
importance to thread breakup problems in industry, is less well-studied than the
surfactant-free case. The surface tension of a surfactant-coated thread depends on
the concentration of surfactant adsorbed on its surface. If motion of the surface
causes variations in the surface concentration then the consequent gradient of surface
tension gives rise to a tangential stress on the surface, which itself produces motion.
Stone & Leal (1990) and Milliken, Stone & Leal (1993) investigated the deformation
and breakup of surfactant-coated drops in an extensional flow in order to develop an
understanding of the relationship between flow, surfactant concentration and surface
stresses. These studies showed that surfactant retards the growth rate of disturbances
to the drop, mainly owing to the effect of surface-tension gradients at the surface, but
also to a reduction in the average surface-tension due to the presence of surfactant.
Milliken et al. (1993) also show that surfactants can have a significant effect on the
pattern of breakup of filamental structures such as those produced by mixing flows
(Tjahjadi & Ottino 1991).

Whitaker (1976) considered the effects of surfactant on the stability of a liquid
thread in inviscid surroundings and showed, for example, that surfactant has no effect
upon the minimum wavelength for instability. Palierne & Lequeux (1991) studied the
effects of ‘surface elasticity’ resulting from surface-tension gradients due to the pres-
ence of surfactant for general viscoelastic fluids (both the thread and the surrounding
fluid) in the Stokes regime. They did not incorporate a surfactant transport equation,
nor an equation relating surface tension to surfactant concentration, and hence had
to introduce a ‘dilatational modulus’ to relate surface stresses to surface strains. This
assumption is not equivalent to the results of modelling surfactant transport below.
In a recent thorough analysis, Hansen, Peters & Meijer (1999) used linear stability
theory to investigate the influence of a soluble surfactant on thread breakup when the
thread is surrounded by another viscous fluid. They explicitly coupled local fluctua-
tions of surface tension due to the transport of soluble surfactant with the governing
Navier–Stokes equations to determine a characteristic equation relating growth rate to
wavenumber for a periodically perturbed thread. Kwak & Pozrikidis (2001) extended
the analysis of Hansen et al. (1999) of the case of insoluble surfactant to include
coaxial internal and external rigid boundaries as might occur in coating problems.
They also studied the nonlinear evolution towards drop formation in the absence of
inertia using the boundary-integral representation of Stokes flow. Ambravaneswaran
& Basaran (1999) used a one-dimensional approximation of the full Navier–Stokes
equations to examine the nonlinear effects of insoluble surfactant on the breakup of
an extending liquid bridge.

In this paper, we investigate in some detail the motion and breakup of a thread of
viscous liquid that is coated with insoluble surfactant and is in inviscid surroundings.
Our aim is to increase understanding of the role of surfactant by investigation of
the limiting forms of the characteristic equation and, thereby, to bring the dominant
physical balances into clear focus. We also formulate one-dimensional models to
describe the nonlinear flow regimes in more detail, and show that it is necessary to
include high-order terms to capture even the linear behaviour.

The paper is organized as follows. In § 2 we summarize the governing axisymmetric
Navier–Stokes equations and interfacial boundary conditions, including an evolution
equation for the surface surfactant concentration. In § 3 we apply linear stability
theory to examine the effects of insoluble surfactant on the dynamics of a long
viscous thread. In particular, we investigate long-wavelength limits of the characteristic
equation as well as the limiting cases of inviscid and viscous threads and of large
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surface-tension-gradient stresses. In § 4 we derive one-dimensional models to describe
the nonlinear dynamics that lead to surface-tension-driven breakup of a surfactant-
coated thread.

2. Governing equations
We consider perturbations to an axisymmetric cylinder of incompressible liquid of

viscosity µ and density ρ. We assume that the effects of gravity and any surrounding
fluid are negligible. Insoluble surfactant resides on the surface of the liquid thread.
The equation of the surface is given by r = a(z, t) in cylindrical coordinates (r, z)
aligned with the thread, where t is time. The radial and axial components of the
Navier–Stokes equations are

ρ
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∂t
+ u

∂u

∂r
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where u is the radial velocity, w the axial velocity and p the fluid pressure. The
continuity equation is given by

∂u

∂r
+
∂w

∂z
+
u

r
= 0 (2.3)

and the kinematic boundary condition on the thread surface is

∂a

∂t
+ wa′ = u (r = a), (2.4)

where primes denote ∂/∂z.
The normal-stress condition on the thread surface is given by

p− 2µ
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(
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(
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= σκ (r = a), (2.5)

where σ is the interfacial surface tension and

κ =
1

a(1 + a′2)1/2
− a′′

(1 + a′2)3/2
(2.6)

is the interfacial curvature. The tangential-stress condition,

µ
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)
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(
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)]
=
∂σ

∂z
(r = a), (2.7)

describes a balance of the viscous stress at the thread surface with the surface-tension
gradients created by the transport of surfactant.

In addition to equations (2.1)–(2.7), we require a transport equation for the sur-
factant concentration Γ and an equation of state σ(Γ ). The effects of surfactant are
twofold: first, it changes the magnitude of the surface tension, resulting in changes to
the capillary pressure that drives the instability; secondly, a non-uniform surfactant
distribution creates surface-tension gradients which result in surface shear stresses.
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The changes in concentration of insoluble surfactant on a deforming liquid–gas
interface are governed by

∂Γ

∂t
= −∇s · (Γus)− Γ (∇s · n)(u · n) (2.8)

(Stone 1990), where Γ (z, t) is the mass of surfactant per unit interfacial area, ∇s =
(I − nn) · ∇ is the surface gradient operator, us = (I − nn) · u is the velocity along the
surface and n is the unit normal to the interface; thus ∇s · n = κ. We have neglected
surface diffusion of surfactant in (2.8) since chemical diffusivities are generally small.
For example, if surfactant with typical diffusivity 10−10–10−9 mm2 s−1 (Tricot 1997)
were added to the liquid-bridge experiments of Zhang, Padgett & Basaran (1996),
which had typical velocities greater than 1 mm s−1 and a lengthscale of order 1 mm,
then the Péclet number would be at least 103–104. (On much smaller scales surface
diffusion would result in a more uniform surfactant distribution (Hansen et al. 1999;
Ambravaneswaran & Basaran 1999; Kwak & Pozrikidis 2001), countering convective
effects; on very small scales or for very large diffusivities surfactant simply lowers the
magnitude of a constant surface tension.)

We consider perturbations in surfactant concentration about an initially uniform
concentration Γ0 corresponding to a uniform surface tension σ0 on the undisturbed
thread. In the linear analysis, it is sufficient to use a linearized surface-tension equation
of state

σ = σ0 − E
(
Γ

Γ0

− 1

)
, (2.9)

where

E = −Γ0

dσ

dΓ

∣∣∣∣
Γ0

(2.10)

is the Gibbs elasticity. In nonlinear calculations, it would be better to use the Frumkin
equation of state in the form

σ = σ0 + RTΓ∞ ln

(
Γ∞ − Γ
Γ∞ − Γ0

)
, (2.11)

where R is the gas constant, T is temperature and Γ∞ is the experimentally deter-
mined maximum adsorption density, which is a reasonable approximation for many
surfactants (Tricot 1997).

3. Linear stability
3.1. Characteristic equation

We use linear stability theory to investigate the behaviour of a small disturbance
to an initially uniform, stationary, unbounded liquid thread uniformly coated with
insoluble surfactant. We assume that all variables are perturbed only slightly from
their stationary values and that the perturbations have the normal-mode form

(u, w, δp, δa, δσ, δΓ ) = (û(r), ŵ(r), δ̂p (r), δ̂a, δ̂σ, δ̂Γ ) exp (ikz + αt), (3.1)

where k is the wavenumber, α the growth rate of the disturbance and δ denotes the
perturbation from a non-zero initial value.

In a similar manner to Tomotika (1935), we linearize the system (2.1)–(2.8) and
solve the linear system to determine the evolution of the perturbed quantities. In this
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way, we deduce the characteristic equation

α2F(kR) +
2k2αµ

ρ
(2F(kR)− 1) +

4µ2k4

ρ2
(F(kR)− F(k̃R))

− k2σ0

ρR
(1− k2R2) +

k4µE

αρ2R

(
2− σ0

αRµ
(1− k2R2)

)
(F(k̃R)− F(kR))

+
Ek2

ρR
(1 + F(kR)[F(k̃R)− 2]) = 0, (3.2)

where R is the unperturbed radius of the thread,

k̃2 = k2 +
ρ

µ
α and F(x) =

xI0(x)

I1(x)
. (3.3)

This characteristic equation may also be deduced by taking the limit of equation
(4.43) of Hansen et al. (1999) for a thread of density and viscosity very much greater
than its surroundings and that is coated with surfactant having zero bulk and surface
diffusivities. It corrects two mistakes in equation (84) of Whitaker (1976). Here,
we focus on analytic exploration of limits and transitions in (3.2) in order to gain
understanding of the dominant physical balances.

3.2. Non-dimensionalization

There are various ways to non-dimensionalize (3.2) and it is worth considering
the options. Different ratios of the main dynamical effects define three commonly
used dimensionless parameters: the Weber number We = ρRU2/σ0, where U is
the velocity scale, describes the ratio of inertial forces to surface-tension forces; the
capillary number Ca = µU/σ0 describes the ratio of viscous to surface-tension forces;
and the Reynolds number Re = ρUR/µ describes the ratio of inertial to viscous
forces. Each of these parameters requires an estimate of the velocity scale U, but the
appropriate choice depends upon the dominant force balance. In the viscous limit,
when viscous and surface-tension forces are comparable and inertia is not important,
(2.1) implies that U ∼ σ0/µ. The appropriate definition for the Reynolds number is
then Re = ρσ0R/µ

2, and in this regime Ca = O(1) while We � 1. In the inviscid
limit, however, a balance of inertial and surface-tension forces gives U ∼ σ0/(ρR)1/2.
The appropriate definition for the Reynolds number is now Re = (ρσ0R/µ

2)1/2, and
in this regime We = O(1) while Ca� 1.

Since the velocity scale depends upon the relevant force balance, results are some-
times expressed in terms of the Ohnesorge number Oh = µ/(ρσ0R)1/2, which depends
only on the fluid properties and geometry. Other scalings can be recovered from
the relationships Oh2 = We/Re2 = Ca/Re. Since these numbers are based on σ0, the
mean reduction in interfacial tension by the surfactant is incorporated into the scaling.
This is appropriate since we are primarily concerned with flow-induced variations in
surfactant concentration. Typical values of the Ohnesorge number are Oh ≈ 10−4 for
a water thread of diameter 1 mm in air and Oh ≈ 102 for a similar glycerol thread.

We non-dimensionalize the wavenumber k by the unperturbed radius R, and the
growth rate α by the capillary timescale µR/σ0 to express the characteristic equation
(3.2) in the non-dimensional form

Rα2F(k) + 2k2α(2F(k)− 1) +
4k4

R (F(k)− F(k̃))− k2(1− k2)

+
k4β

Rα
(

2− 1− k2

α

)
(F(k̃)− F(k)) + βk2(1 + F(k)[F(k̃)− 2]) = 0, (3.4)
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where

k̃2 = k2 +Rα, (3.5)

R = Oh−2 =
ρσ0R

µ2
, (3.6)

and both k and α are now dimensionless. The parameter R is equal to Re for R � 1
and Re2 for R � 1. The parameter

β = − Γ0

σ0

dσ

dΓ

∣∣∣∣
Γ0

=
E

σ0

(3.7)

is a dimensionless measure of the strength of the surfactant with 0 6 β < ∞.
When β = 0, (3.4) reduces to Rayleigh’s well-known characteristic equation for

a viscous thread surrounded by a fluid of negligible viscosity (Rayleigh 1892). An
infinitesimal perturbation, of wavelength 2π/k, to the free surface of the thread grows
exponentially provided k lies in the band 0 6 |k| < 1 for which the destabilizing
perturbation to the azimuthal curvature exceeds the stabilizing perturbation to the
axial curvature. Moreover, there is a unique wavenumber km in this band which gives
a maximum growth rate αm.

3.3. Long-wave expansion

The characteristic equation (3.4) is complicated because k̃ is a function of α, so that α
is contained in the arguments of some of the Bessel functions. In order to gain some
analytical insight, we consider a simpler form of the equation valid in the long-wave
limit |k| � 1. As shown below, this situation is particularly relevant to viscous threads
for which km � 1.

Subject to a posteriori confirmation, we assume that Rα � 1 as k → 0. For small
arguments, series expansion of the Bessel functions gives F(x) = 2(1+x2/8−x4/48)+
O(x6). We can thus expand (3.4) for |k| � 1 as

2Rα2

k2
− 1 + 6α+ β

(
1 +
Rα
2

)
+ k2 + βk2

(
− 1

4α
+ 1 +

R
24

)
+
βk4

3α
= O(k4, k2α, α2).

(3.8)

In the simple case β = 0 we deduce from a balance of the first two terms that α ∼ k
for small k. If we assume that α ∼ k for β > 0, (3.4) is solved to leading order by

α2 =
k2

2R (1− β). (3.9)

The requirement that Rα� 1 as k → 0 thus implies that k � R−1/2 and that there is
a non-uniformity with the inviscid limit R → ∞. (Non-uniformities between various
limits in k and R occur throughout the remainder of § 3. The domains of validity are
shown schematically in figure 1 to allow the relationship between the results to be
seen more easily.)

Clearly, some transition also occurs at β = 1, suggesting that (3.9) is only applicable
for β < 1. In order to investigate β > 1, we first consider the limit β � 1. For β →∞,
the long-wave limiting form of (3.4) is given by

1− k2

4α
+
Rα
2

+ k2

(
1 +
R
24

)
+
k4

3α
= 0, (3.10)

and from a balance of the first two terms α ∼ k2 in this limit. If we assume that
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ln k ln k ln k ln k

(3.8)
(3.9) β < 1
(3.11) β > 1

ln 21/2 ln 21/2 ln 21/2 ln 21/2
(3.13)

(3.14)

(3.16)

Figure 1. Schematic representation of the domains of validity for the various asymptotic expansions
in § 3 of the characteristic equation (3.4). For example, (3.8), (3.9) and (3.11) all require both k � 1
and k � R−1/2.

α ∼ k2, (3.4) is given to leading order by

α =
k2

4

β

β − 1
, (3.11)

which is only valid for β > 1.
The change in leading-order behaviour at β = 1 is a result of a transition from

extension-dominated to shear-dominated flow as β increases through 1, and will
be discussed further in § 4.4. The difference between (3.9) and (3.11) shows a non-
uniformity of the limits β → 1 and k → 0, which is resolved by noting that (3.9) is
valid only for k � (1− β)3/2R−1/2 while (3.11) requires k � (β− 1)3/2R−1/2 as β → 1.
(For the special case β ≡ 1 between (3.9) and (3.11) the long-wave limit gives an
intermediate form α = (k4/8R)1/3.)

Equations (3.9) and (3.11) also differ in their dependence on R, which motivates
examination of the limits of inviscid and very viscous threads and the corresponding
long-wave expansions.

3.4. Viscous thread

In the viscous limit, R → 0, the effects of inertia can be neglected relative to viscosity.
In this limit, (3.5) can be approximated by

k̃ ≈ k +
Rα
2k
, (3.12)

and we take a Taylor series of F(k̃) about k to find that (3.4) becomes

2α(F(k)2 − 1− k2)− (1− k2) + β(1 + k2)− β (1− k2)

2α
(k2 + 2F(k)− F(k)2) = 0

(3.13)

as R → 0. This equation is valid for k2 � R, but fails if k2 → 0 faster than R → 0.
When β = 0 equation (3.13) coincides with Rayleigh’s surfactant-free result

(Rayleigh 1892). In particular, the growth rate is maximal when k = 0, so that
the most unstable perturbation has infinite wavelength, as shown in figure 2(a). How-
ever, if the small inertia terms are retained for R � 1, the most unstable wavenumber
is non-zero as shown in figure 2(b).

The scaling of the long-wave cut-off provided by a small amount of inertia has
not, to our knowledge, been analysed directly from the full equations. Figure 3 shows
αm(R) and km(R) as calculated from the full characteristic equation (3.4) with β = 0.
The asymptotic behaviour in the viscous limit R → 0 suggests that αm = O(1) and
km ∝ R1/4. This is confirmed by expansion of (3.4) with k � 1, R � 1 and α = O(1),
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Figure 2. Growth rate α as a function of wavenumber k for a very viscous thread with no surfactant
(β = 0) and (a) R = 0 (zero inertia), (b) R = 10−4 (small inertia). Inertia provides a long-wave
cut-off.
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Figure 3. (a) αm and (b) km as functions of R (solid curves) for a surfactant-free thread (β = 0).
The asymptotes (dashed) show that αm ∼ R−1/2 in the inviscid regime and km ∼ R1/4 in the viscous
regime.

to obtain

2Rα2

k2
+ 6α− 1 + k2 + β

(
1 + k2 − k2

4α

)
+ O(k4,R) = 0. (3.14)

When β = 0, the second and third terms balance at leading order to give α ∼ 1
6
;

the weakly maximal growth rate is found by optimizing the first and fourth terms
to obtain km ∼ (R/18)1/4 and αm ∼ 1

6
− (R/2)1/2. The optimized terms correspond to

inertia and the axial curvature; corrections to the leading-order extensional viscous
stresses are, somewhat surprisingly, higher order in the linear problem.

3.5. Inviscid thread

In the inviscid limit, R → ∞, viscosity can be neglected relative to inertia. In this
limit (3.5) can be approximated by

k̃ ≈ (Rα)1/2

(
1 +

k2

2Rα
)
. (3.15)
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We take a Taylor series of F(k̃) about (Rα)1/2 and use asymptotic expansions of the
modified Bessel functions for large arguments (Abramovich & Stegun 1965) to find
that F(x) ∼ x for x� 1. Hence F(k̃) ∼ (Rα)1/2 as R → ∞, and (3.4) becomes

α2 =
k2(1− k2)

RF(k)
. (3.16)

The scaling αm ∼ R−1/2 as R → ∞ also follows by dimensional analysis and in-
dependence of µ and is apparent in figure 3(a). Equation (3.16) is valid for all β
when R � 1 and, since it is independent of β, it agrees with Rayleigh’s result for a
surfactant-free inviscid thread (Rayleigh 1879, 1892). Thus, in the inviscid limit, sur-
factant plays no role other than to reduce the mean value of the surface tension, as
noted also by Whitaker (1976) and Hansen et al. (1999). The reason is two-fold. First,
surfactant gradients cannot persist on the surface of an inviscid thread because any
surface-tension gradients would drive a boundary-layer flow uninhibited by viscous
forces which would rapidly restore a uniform surfactant distribution. Second, any
tangential stresses in such a boundary-layer flow would not be communicated to the
interior of an inviscid thread.

The long-wave limit of (3.16) gives α2 = k2/2R at leading order independent of
β, whereas the inviscid limit with k � R−1/2 � 1 of the long-wave expansion (3.8)
is (3.9). The non-commutation of these limits is due to the fact that the long-wave
limit averages surfactant stresses over the cross-section, whereas the inviscid limit
confines them to surface boundary layers; the boundary k ∼ R−1/2 corresponds to
the lengthscale required for viscous diffusion of surface stresses into the interior.

3.6. The effects of surfactant

3.6.1. Large tangential stresses β →∞
The parameter β represents the strength of the effect of variations in surface

tension (dσ/dΓ )δΓ made dimensionless with respect to the mean surface tension σ0.
As β →∞, the limiting form of (3.4) is

Rα2(1 + F(k){F(k̃)− 2}) + 2k2α{F(k̃)− F(k)} − k2(1− k2){F(k̃)− F(k)} = 0, (3.17)

which gives a non-zero growth rate independent of β.
It is worth outlining how (3.17) can also be derived by using the intuitive notion

that strong surfactant effects tend to immobilize an interface, since two points need
clarification. First, as β → ∞, the surface velocities must be such that Γ remains
approximately uniform since significant gradients in Γ would drive a strong restoring
flow. While this simply requires a zero tangential velocity on a non-deforming interface
(e.g. rigidification near the rear stagnation point of a rising contaminated bubble, or
the factor of 4 decrease in flux from rigid-free to rigid-rigid boundary conditions in
film flow), for a deforming interface (2.8) yields the condition

∂w

∂z
+
u

a
= 0 (r = a) (3.18)

(cf. (5.18) in Hansen et al. 1999) with corrections at O(β−1). Thus the tangential flow
is non-zero but must balance the radial dilatation. Second, the perturbation from
uniform surface tension is not negligible, as stated for example by Hansen et al.
(1999), but rather is an O(1) quantity derived from O(β−1) variations in Γ multiplied
by an O(β) dependence of σ on these variations. The characteristic equation for
β → ∞ can thus be obtained directly by replacing (2.8) by (3.18) in the linearized
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Figure 4. Growth rate α as a function of wavenumber k for β = 0 (top curves), 0.25, 0.5, 1, 2, 10.
The limit β → ∞ (dashed) is given by (3.17). (a) R = 0.01 (b) R = 100. Surfactant has a much
greater effect on a viscous thread. The effects of surfactant disappear as R → ∞ (3.16).

perturbation equations. Equation (3.18) functions as a tangential-stress condition, and
(2.7) now enables the surface-tension perturbation δσ to be calculated from u and w.
Similar reasoning could be applied to other flow geometries.

3.6.2. Surfactant concentrations 0 < β < ∞
Figure 4 shows the effect of the surface-tension-gradient parameter β on α(k) as

computed from (3.4). In the presence of surfactant, the growth rate α still has a
maximum αm for some wavenumber km in the range 0 < k < 1. The most obvious
result is that surfactant reduces the growth rate of disturbances to the thread. The
limiting form (3.17) for β → ∞ (dashed curves) thus provides a lower bound for the
growth rate for each R.

The influence of surfactant is much less in the inviscid regime (large R) than in the
viscous regime (small R), and the dominant wavenumber changes little for R = 100
over the whole range 0 6 β < ∞. For R = 0.01 the tangential stresses caused by
surface-tension gradients significantly modify the flow and cause a dramatic shift
to shorter wavelengths as β increases beyond 0.5. The related change in long-wave
scaling noted earlier, from α ∼ k (3.9) to α ∼ k2 (3.11) as β increases through 1, is
clearly seen in figure 5.

The effects of surfactant on the dominant long-wave instability for the viscous limit
R � 1 can be found from (3.14). The leading-order terms for k � 1 with α = O(1)
give α ∼ (1− β)/6. Looking for a long-wave inertial cut-off for 0 < R � 1 results in

k4
m =

R(1− β)3

18(β + 2)( 1
2
− β)

(β < 1
2
) (3.19)

so that km = O(R1/4) again provided that β < 1
2
. The divergence as β ↗ 1

2
suggests

that surfactant is taking over the long-wave cut-off from inertia.
Figure 6(a) shows α(k) for R = 0, as described by (3.13). Small values of β give a

maximum growth rate at k = 0, but large values give a maximum growth rate at a
finite wavelength. If we let R → 0 and rewrite (3.14) as

α =
1− β

6
+ A

k2

6
+ O(k4), (3.20)



Effect of surfactant on stability of a liquid thread 299

0.08

α

k

0.06

0.04

0.02

0 0.04 0.08 0.12 0.16

β = 0

0.5

1.0

¢
1.5

Figure 5. Growth rate α(k) for k � 1 with R = 1 and β = 0 (top curve), 0.5, 1, 1.5 and ∞ (dashed).
For k � 1 there is a transition from α ∼ k for β < 1 through α ∼ k4/3 for β = 1 to α ∼ k2 for β > 1.
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Figure 6. (a) Variation of the growth rate α(k) from (3.13) for a very viscous thread (R = 0)
for β = 0 (top curve), 0.25, 0.5, 0.75, 1, 2 and 10. In the limit β → ∞ (dashed) km → 0.6361
and αm → 0.0415. (b) The growth rate (4.15) of the O(ε4) one-dimensional model (4.12)–(4.14)
(solid) is virtually identical to that of the full axisymmetric equations. In the limit β → ∞ (dashed)
km → 0.6409 and αm → 0.0426. The growth rate (4.18) of the O(ε2) model (4.16)–(4.14) (dotted for
β = 0.25, 0.5, 0.75) is the same for β = 0, but fails to show the important changes in behaviour at
β = 1

2
and β = 1.

where

A =
β

4α
− (1 + β), (3.21)

it is clear that this change in behaviour occurs when A = 0. We substitute αm =
(1 − β)/6 into (3.21) to find that km > 0 for R = 0 if β > 1

2
. Palierne & Lequeux

(1991) found a similar feature for a critical value of an interfacial ‘dilatational
modulus.’ However, they did not determine the form of the modulus, which requires
coupling the surfactant evolution equation to the equations of motion.

Prediction of the finite dominant wavelength for a very viscous thread is an
important case to consider. We conclude from the above that if β < 1

2
then inertia

provides a long-wave cut-off and km = O(R1/4) whereas if β > 1
2

then surfactant
provides a long-wave cut-off and km = O(1). Inclusion of an external fluid with small
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viscosity λµ also provides a mechanism for long-wave cut-off (Tomotika 1935) with
km = O(λ1/4) and in this case the dominant mechanism is given by the largest of β− 1

2
,

R1/4 and λ1/4.

4. One-dimensional nonlinear approximations
The dynamics of the free surface close to breakup of the thread cannot be described

by linear theory and a fundamentally different approach is required for the fully non-
linear regime. The full three-dimensional Navier–Stokes equations for the dynamics
are computationally expensive, even in the axisymmetric limit. However, the dynamics
are known to be dominated by long-wave behaviour both in the linearized viscous
limit from § 3.4 and close to breakup when there is no surfactant (Eggers 1993).
The aim of this section is to develop a one-dimensional long-wave approximation
that describes the effects of surfactant into the nonlinear regime. Formal procedures
for systematic derivation of a hierarchy of long-wave approximations for the case
of no surfactant are described in Eggers & Dupont (1994), Garcia & Castellanos
(1994), Bechtel, Carlson & Forest (1995) and Eggers (1997). Here we shall proceed
less formally and more directly to an approximation of sufficient accuracy to capture
the variation of the linearly most unstable wavelength for β < 1

2
. This approximation,

analogous to the averaged parabolic model of Garcia & Castellanos (1994), necessar-
ily involves higher-order corrections to the viscous and inertia terms than are needed
for β = 0.

4.1. Derivation

In a long-wave approximation we assume that the typical axial lengthscale of variation
is much greater than the typical radial scale so that, for example, a′ and a ∂/∂z are
O(ε), where ε� 1. If radial variations are small then u, w and p are well-represented
by the first few terms in their radial power series, and we write

w(r, z, t) = w̄(z, t) +

(
r2

a2
− 1

2

)
w1(z, t), (4.1)

p(r, z, t) = p(z, t) +

(
r2

a2
− 1

2

)
p1(z, t), (4.2)

u(r, z, t) = − 1
2
rw̄′ − 1

4
r3
(w1

a2

)′
+ 1

4
rw′1. (4.3)

Here w̄ and p denote the (exact) cross-sectional averages of w and p, and w1 and p1

denote the amplitudes of the small average-free quadratic correction. We shall find
that w1/w̄ and p1/p are O(ε2) if β < 1; the omitted quartic corrections are O(ε4). The
form of u is obtained from that of w by mass conservation.

The advantage of expanding about the cross-sectional average is that the governing
equations (2.1)–(2.7) can be rewritten in exact conservation form as

∂

∂t
(a2) +

∂

∂z
(a2w̄) = 0, (4.4)

∂

∂t
(ρa2w̄) +

∂

∂z
(ρa2w2) =

∂

∂z

(
−a2p+ 2µa2 ∂w

∂z
+

2aσ

(1 + a′2)1/2

)
. (4.5)

The dimensionless form is obtained by replacing ρ by R and µ by 1. Since w2 =
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w̄2 + O(w2
1) and ∂(a2w̄)/∂z = a2∂w/∂z + 2aa′w(a), a little manipulation produces

Ra2

(
∂w̄

∂t
+ w̄

∂w̄

∂z

)
=

∂

∂z

(
−a2p+ 2a2 ∂w̄

∂z
− 2aa′w1 +

2aσ

(1 + a′2)1/2

)
(4.6)

with O(ε4) relative errors.
Substitution of (4.1) and (4.3) into the tangential-stress boundary condition (2.7)

yields

w1 = 3
2
aa′w̄′ + 1

4
a2w̄′′ + 1

2
aσ′ (4.7)

with O(ε2) relative errors. If 2(a2w̄′)′ and 2(aσ)′ are both leading-order terms in
(4.6) then aσ′ = O(a2w̄′′), and (4.7) confirms that w1/w̄ is O(ε2). The normal-stress
boundary condition (2.5) is approximated by

p+ 1
2
p1 = σκ+ 2

{
∂u

∂r
− a′

(
∂w

∂r
+
∂u

∂z

)
+ a′2

(
∂w

∂z
− ∂u

∂r

)}
(4.8)

with O(ε4) relative errors. Substitution of (4.1) and (4.3) yields

p = σκ− w̄′ − w′1 − a′w1/a+ 3a′2w̄′ + aa′w̄′′ − 1
2
p1 (4.9)

with the same errors. Finally, substitution of (4.1)–(4.3) into the radial momentum
equation (2.1) yields

R(− 1
2

˙̄w′ + 1
4
w̄′

2 − 1
2
w̄ w̄′′) = −2p1/a

2 − 1
2
w̄′′′ − 2(w1/a

2)′ (4.10)

with O(ε2) relative errors, where an overdot denotes ∂/∂t. Equations (4.9) and (4.10)
confirm the relative magnitudes of p and p1. We now use (4.7)–(4.10) to eliminate p,
w1 and p1 from (4.6), and apply the identity

∂

∂z

(
2a

(1 + a′2)1/2

)
= κ

∂a2

∂z
. (4.11)

The resultant evolution equation for w̄ is

Ra2
(

˙̄w + w̄ w̄′
)− 1

8
R[a4( ˙̄w

′ − 1
2
w̄′

2

+ w̄ w̄′′)]′ = −a2(σκ)′ + 2aσ′/(1 + a′2)1/2

+ 1
4

[
a2(aσ′)′

]′
+ 3[(a2 + 1

4
a3a′′ − 3

4
a2a′2)w̄′]′ (4.12)

accurate to relative error O(ε4). The evolution equations for a and Γ are obtained
from (4.4) and (2.8) as

ȧ+ w̄a′ = − 1
2
aw̄′, (4.13)

Γ̇ + [Γ (w̄ + 1
2
w1)]

′ = 1
2
Γκ(aw̄′ − a′w1), (4.14)

where w1 can be eliminated from (4.14) using (4.7). Equations (4.12)–(4.14), together
with the equation of state σ(Γ ), then form a closed one-dimensional model for the
long-wave evolution.

4.2. Linear behaviour

The characteristic equation for linear disturbances to a uniform state in the one-
dimensional model is

2Rα2

k2
− 1 + 6α+ β +

αβR
2

+
α2R

4
+ k2

(
1 + β − β

4α
+
αβR
16

)
+
k4β(α+ 4)

16α
= 0.

(4.15)
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This differs from the full characteristic equation (3.4) at O(k4, k2R,R2), which is as
expected for k = O(ε) provided Rα = O(ε2). Crucially, the O(k2) terms are correct,
and hence the most unstable wavelength in the one-dimensional model is given by
(3.19) for β < 1

2
and R � 1. (If β > 1

2
or R > O(1) there is no reason to expect

long-wave behaviour to dominate the linear regime.)
From studies of thread without surfactant it would be tempting to use the simpler

O(ε2) long-wave model

Ra2( ˙̄w + w̄ w̄′) = −a2(σκ)′ + 2aσ′ + 3(a2w̄′)′, (4.16)

Γ̇ + (Γw̄)′ = 1
2
Γw̄′, (4.17)

together with (4.13). However, this gives the characteristic equation

2Rα2

k2
− 1 + 6α+ β + k2 = 0, (4.18)

which differs at O(k2) from the long-wave expansion (3.8) and fails to show the long-
wave cut-off provided by surfactant for β > 1

2
. Somewhat fortunately, it does give

the most unstable wavelength for β = 0 since the sole O(k2) linear term is captured
by use of the full curvature κ, while the comparable corrections 3

4
a3a′′ − 9

4
a2a′2 to

the extensional viscosity in (4.12) only appear in the nonlinear problem. Comparison
of the characteristic equations (4.15) and (4.18) in figure 6(b) shows that the O(ε4)
model reproduces all the features of the full characteristic equation with surprising
accuracy, while the O(ε2) model can be misleading unless β is small.

4.3. Scaling analysis near breakup

Very close in time and space to the point where a fluid thread or drop breaks into two
drops, there is no externally imposed lengthscale and the evolution of the free-surface
shape is self-similar and independent of initial conditions. Various dynamical regimes
in the absence of surfactant have been analysed, as reviewed by Lister et al. (1997),
and the corresponding similarity solutions derived. In particular, we note that, in
the presence of a non-zero external viscosity, however small, the eventual asymptotic
balance is between internal and external viscous stresses and surface tension, with
inertia being negligible (Lister & Stone 1998).

If there is no external viscosity and no surfactant (β = 0) then the asymptotic
behaviour near breakup is described by (4.13) and (4.16) with σ constant, for which
self-similar solutions have been found by Eggers (1993) and Brenner, Lister & Stone
(1996). These solutions balance inertial, viscous and surface-tension terms in (4.16) so
that

z ∼ τ1/2, w ∼ τ−1/2 and a ∼ τ, (4.19)

where τ is the time remaining until the thread pinches off at z = 0. When β 6= 0, we
can use scaling analysis to argue that surfactant has little effect on the self-similar
evolution close to breakup. From (4.13) and (4.14) or (4.17), we deduce that Γ ∼ a.
Hence, the ratio of the leading-order viscous term Fµ in (4.12) to the leading-order
term Fβ arising from surface-tension gradients scales as

Fµ

Fβ
∼ w/z2

βΓ/(az)
∼ 1

βτ
. (4.20)

Thus, as τ → 0, Fβ becomes negligible regardless of the strength of the surfactant.
This is because the strong extensional flow in the neighbourhood of breakup sweeps
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surfactant away from this region and Γ → 0. Moreover, from (4.19) ε ∼ τ1/2 → 0
and the higher-order terms in (4.12) drop out. Thus, while the initial linear instability
scales with σ0 and is influenced by β, the final breakup scales with the uncontaminated
surface tension σ(0) and is unaffected by surfactant. (The same conclusion also applies
to the intermediate asymptotic similarity solution for R � 1 of Papageorgiou (1995)
in which inertia is negligible, z ∼ τ0.175, w ∼ τ0.175−1, a ∼ τ and (4.20) still holds.)

It is interesting to compare these theoretical scaling arguments with the numer-
ical simulations of Ambravaneswaran & Basaran (1999) and Kwak & Pozrikidis
(2001) which were based on the one-dimensional model (4.16) and boundary-integral
calculations for Stokes flow respectively. Both papers allowed for surface diffusion
of the insoluble surfactant and introduced a Péclet number to quantify the relative
importance of advection and diffusion. For large Péclet numbers (small/negligible
diffusion) the numerical results show the surfactant concentration approaching zero
near pinching, in agreement with the theoretical arguments given here. Kwak &
Pozrikidis (2001) also show numerical evidence for convergence towards the Stokes-
flow similarity solution of Papageorgiou (1995).

For small Péclet numbers (rapid diffusion) the numerical results are more equivo-
cal. Surfactant concentrations tended to decrease somewhere in the stretching neck,
but not always at the narrowest point, and they were still far from zero when the
calculations were terminated at a small, but non-zero, minimum radius. Nevertheless,
we argue from (4.19) that extensional advection of surfactant asymptotically over-
whelms diffusion so that the pinching region is again governed by the surfactant-free
similarity solutions. (For diffusion to keep pace with advection, surfactant gradients
would have to increase like τ−1/2, but both extension and diffusion act to reduce
gradients.) Numerical confirmation of this argument would require higher-resolution
calculations close to pinch-off.

4.4. Long-wave evolution for β > 1

In § 4.1, we argued that the long-wave model was accurate to O(ε4) if aσ′ = O(a2w̄′′).
This condition ceases to hold for β > 1 and the accuracy of the model decreases
to O(ε2). Though the dominant activity is expected to shift to O(1) wavelengths for
β > 1

2
, it is instructive to consider the changed long-wave dynamics for β > 1. We

make an alternative assumption that aσ′ � a2w̄′′ so that (4.5) and (4.7) become

(aσ)′ = 0, (4.21)

w1 = 1
2
aσ′, (4.22)

at leading order. The axial force balance (4.21) is quasi-static and the average velocity
w̄ is determined instead by the surfactant transport equation

Γ̇ + (w̄ + 1
2
w1)Γ

′ = − 1
2
Γ {w̄′ + (aw1)

′/a}. (4.23)

Equations (4.21)–(4.23), together with (4.13), form a closed nonlinear model for this
regime.

The characteristic equation for the linear stability problem is, as desired, the same
as (3.11). The linearized equations also show that

w(r, z, t) =

(
3β − 1

2β
+

1− β
β

r2

a2

)
w̄(z, t), (4.24)

so that w1 and w̄ are of comparable order rather than separated by O(ε2). The quartic
corrections are now O(ε2) instead of O(ε4) and, while (4.7), (4.12) and (4.14) include
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(4.21)–(4.23) at leading order, the remaining terms are not the appropriate O(ε2)
corrections.

The mixture of parabolic and uniform flow in (4.24) corresponds to the same
dynamical balance (between pressure gradients and shear stresses) as in standard
lubrication theory, but with a partially slipping boundary condition. We note that
w(a) is generally non-zero, even as β →∞, in line with the conclusions of § 3.6.1.

5. Conclusion
We have examined various limiting forms of the characteristic equation relating

growth rate α to wavenumber k for a periodically perturbed liquid thread in the
presence of insoluble surfactant. As might be expected, surfactant slows the growth
of the Rayleigh instability at all wavelengths and Reynolds numbers. However,
increase of surfactant effects, as measured by a surface-tension-gradient parameter β,
initiates a number of distinct transitions in the asymptotic behaviour.

First, we have shown that surfactant can act as a distinct mechanism for long-wave
cut-off in the instability of a viscous thread. If β < 1

2
then the cut-off is provided

either by a small amount of inertia with k ∼ R1/4 or by a small amount of external
viscosity. In both cases km remains long-wave. However, if β > 1

2
then km shifts toward

O(1) values, owing to the inhibition of axial motion by surfactant stresses.
Secondly, long-wave expansions reveal that β = 1 characterizes a transition from

extensionally dominated flow with inertia for β < 1 to shear-dominated viscous flow
with negligible inertia (like a lubrication flow) for β > 1. For β > 1, the viscous shear
stresses are supported by surface-tension gradients and the axial velocity profile has
comparable Poiseuille and plug-flow components.

In the limit β → ∞, tangential flow must balance the local surface deformation so
that the concentration of surfactant remains uniform on the surface; this condition
means neither that the surface behaves rigidly nor that the surface tension is uniform,
as is sometimes suggested. We have shown how this condition can be used to derive
a characteristic equation relating growth rate and wavenumber in this limit.

Moving into the nonlinear regime, we have developed asymptotic expansions in
a slenderness parameter ε leading to a one-dimensional model (4.24)–(4.14) for a
surfactant-coated thread; unlike the case of a surfactant-free thread, such a model
requires higher-order terms in addition to the full curvature even to give the same
linear behaviour as the full axisymmetric equations, and a lower-order model can be
quite misleading. There is surprisingly good agreement in linear growth rates between
our one-dimensional model and the full equations over a wide range of wavenumbers
and for different values of β. The model also includes the nonlinear terms necessary
to capture the self-similar dynamics close to breakup: here scaling arguments show
that surfactant is advected away from the point of breakup sufficiently rapidly
that the asymptotic evolution in the absence of an external fluid is described by
the equations and similarity solution for an uncontaminated thread (Eggers 1993;
Brenner et al. 1996). How accurately the model describes the nonlinear evolution
between the linear instability and the asymptotic similarity regime near breakup can
only be evaluated properly by comparison with either experiments or high-resolution
numerical simulations of the full axisymmetric equations. Such numerical comparisons
have been made for the surfactant-free case (Wilkes, Phillips & Basaran 1999) by
using a sophisticated adaptive finite-element method to resolve the two-dimensional
flow at moderate Reynolds numbers, and it is hoped that a similar study will be
made with surfactants. For applications, it would also be of interest to study the
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formation, size and number of satellite drops, which depends on the global evolution
from initial to final geometry. This is a tricky problem and previous studies with
and without surfactants (Tjahjadi, Stone & Ottino 1992; Brenner, Shi & Nagel 1994;
Ambravaneswaran & Basaran 1999; Kwak & Pozrikidis 2001, for example) have
noted complex and non-monotonic behaviour, which makes it difficult to establish
trends without an exhaustive parameter study.

Finally, we note that, even in this relatively simple problem, there is a rich asymp-
totic behaviour in which many of the limits do not commute. Some additional effects,
such as surfactant diffusion or a small bulk solubility, would not be expected to
change the long-wave behaviour, while adding the effects of a surrounding fluid of
comparable viscosity certainly would. It is hoped that insights from the dynamical
balances and asymptotic limits found in this problem can be used to guide further
investigation of related problems, such as surfactant spreading.
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